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Lipid membranes with an edge
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Consider an open lipid membrane with a free exposed edge. The energy describing this membrane is
quadratic in the extrinsic curvature; that describing the edge is proportional to its length. We determine the
boundary conditions satisfied by the equilibria of the membrane on this edge. The derivation is free of any
assumptions on the symmetry of the membrane geometry. With respect to the axially symmetric case, there is
an additional boundary condition that is identically satisfied in that limit. By considering the balance of the
forces operating at the edge, a physical interpretation for the boundary conditions is provided. The effect of the
addition of a Gaussian rigidity term for the membrane is also considered.
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I. INTRODUCTION

Lipid membranes are described remarkably well by a g
metrical Hamiltonian. This Hamiltonian is constructed as
sum of the scalars, truncated at an appropriate order, w
characterize those features of the membrane geometry
are relevant. A term quadratic in the extrinsic curvature p
vides a measure of the energy penalty associated with b
ing @1–5#; any intrinsic tendency to bend one way and n
the other is captured by a term linear in the extrinsic cur
ture @6#.

The shape equation determining the equilibria of t
membrane is a fourth-order nonlinear elliptic partial diffe
ential equation of the form¹2K1K350, where¹2 is the
Laplacian on the membrane,K is the sum of the principa
curvatures, and byK3 we mean a cubic polynomial in thes
curvatures@7#. Here, we would like to examine the bounda
conditions that must supplement this equation when
membrane possesses a free edge. The energy cost asso
with this edge is, to a first approximation, proportional to t
exposed length. During the formation process, material
either be added to the edge or the edge will heal itself so
to form closed structures. There are, however, metast
~cup-shaped! equilibria of the lipid membrane with a fre
edge@8#. See also Ref.@9#. An examination of the energetic
of these structures is important for an understanding of
assembly process. Alternatively, a line tension can be a
ciated with a domain boundary between two different pha
of an inhomogenous vesicle@10,11#, and leads to budding
For simplicity, however, in this paper we will restrict ou
selves to the case of an open homogenous vesicle.

Our primary focus will be on the boundary geometry. W
have a surface with a boundary and a certain energy pen
associated with it, a well-defined problem in classical fie
theory. The boundary conditions are identified by demand
that the energy should be stationary for arbitrary deform
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tions of the edge geometry. In distinction to the analy
treatment of the problem provided in Ref.@8#, we will relax
the assumption that the membrane geometry be axially s
metric. This is important not only for conceptual reaso
Generally, there will be no privileged parametrization su
as that tailored to axial symmetry; in an axially symmet
geometry the edge itself is simply a circle. We find that the
are three boundary conditions. As we will demonstrate o
of these conditions, involving three derivatives of the emb
ding function, is satisfied identically in the axially symmetr
limit. Therefore this limit is not a reliable guide to the ge
eral case.

While the variational approach does capture the geome
cal nature of the boundary conditions, the physical interp
tation of these conditions still needs to be clarified. Idea
one would like to interpret them in terms of the balance
the forces operating at the edge. To do this in a way that d
justice to the geometry, we identify the conserved Noet
currents associated with the intrinsic translational invaria
of the configuration@12#. The three, apparently unrelate
boundary conditions are now cast in terms of the three co
ponents of a single vector identity on the edge.

We finish with a discussion of the effect of a Gaussi
rigidity term on a lipid membrane with edges. Whereas su
a topological term does not alter the bulk shape equation,
show that it does modify the boundary conditions that ap
to it in a way that will have consequences in the bulk. Th
extension is relevant in topology changing processes@8#.

The outline of the paper is as follows. In Sec. II, w
consider the simple example of a surface tension domina
membrane. This allows us to establish our notation and
derive the boundary conditions in a simple context. In S
III, we derive the boundary conditions at the edge for a lip
membrane. We then specialize to axially symmetric confi
rations to compare our results in this limit with previou
work on the subject. In Sec. IV, we consider the balance
the forces operating at the edge, and we show how they
related to the boundary conditions. The effect of adding
Gaussian rigidity term to the membrane energy is the sub
of Sec. V, where we obtain the appropriate modifications
©2002 The American Physical Society07-1
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the boundary conditions. We end with some remarks in S
VI.

II. SURFACE TENSION PITTED AGAINST EDGE
TENSION

It is useful to examine first the simpler situation in whic
the membrane physics is dominated by surface tension,
as a soap film with a free edge. Let the membrane surfacS
have an areaA, with boundaryC of lengthL, and the tension
in the membrane bulk be a constantm, and that on the edge
s. The energy is then given as a sum of two terms,

F5mA1sL. ~1!

Surface tension tends to decrease the membrane area
tension to decrease the length of the free boundary. With
some further refinement, this model does not admit sta
equilibria. Suppose a hole is punctured in the film, then
pending on its radius, either the hole will close healing
film, or grow and destroy it. An unstable equilibrium clear
exist when the radius is tuned to coincide with a critic
value r c . On dimensional ground, one would expectr c
'm/s. ~We will ignore this instability here as our interest
this model is only as a point of reference for a lipid me
brane.!

The membrane surfaceS is described by the embeddin
X in three-dimensional spaceR3 as x5X(ja), wherex are
coordinates forR3, and ja coordinates for the surfac
(a,b, . . . 51,2). Its edgeC is embedded in turn as a curv
on S asja5Ya(s), which we parametrize by its arclengths.
See Fig. 1. We can now castF as

F5mE
S
d2jAg1s R

C
ds. ~2!

Here, the metric induced onS is given by gab5ea•eb ,
where eaª]X/]ja are the tangents to the surface,g
5detgab , anddA5Agd2j. Note that we can also conside
the direct embedding of the edgeC in R3, via x5Y(s),
whereY5X„Ya(s)…. The tangent toC in R3 is equivalently

FIG. 1. Definition of the quantities used in the description of t
geometry of an open membrane with an edge.
02160
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expressed in either of two ways:t5eata, whereta5Ẏa or t
5Ẏ, where a dot denotes a derivative with respect to a
lengths.

The energy is a functional of the embeddingX of S in R3.
There is no need to vary the edge embeddingYa indepen-
dently: theYa are fixed by the constraint that the two em
beddings agree,Y5X, on C.

Equilibrium configurations are those at which the ener
~1! is stationary. To derive the equations describing the eq
librium configurations in this model, we first consider
variation of the embeddingX of the membraneX→X1dX.
We letn denote the unit normal to the surfaceS. We decom-
pose the displacement with respect to the spatial b
adapted toS, $ea ,n%, as,dX5Faea1Fn. The induced met-
ric then varies according todXgab52KabF1“aFb
1“bFa , whereKab denotes the extrinsic curvature tenso

Kab5eb•]an, ~3!

and “a is the covariant derivative onS compatible with
gab . The derivative terms in the variation ofgab are its Lie
derivative along the tangential vector field,Fa. The variation
of A is

dXA5E
S
dAKF1 R

C
dslaFa . ~4!

The mean extrinsic curvature isK5Kabg
ab. The second

term is obtained using Stoke’s theorem. Herel a is the out-
ward pointing normal toC on S. Only the normal projection
F of the variation plays a role in determining the bulk equ
librium of the membrane. This is true generally, regardle
of the model. In this particular model, however, there
no boundary term associated with the bulk normal displa
mentF. As we will see, this is not generally true—a happ
accident when the energy is truncated at the area term.
the other hand, the tangential bulk variationFa always gives
only a boundary term. This is a consequence of the fact
a tangential deformation corresponds in the bulk to an infi
tesimal reparametrization of the surface. There is, howeve
physical displacement of the boundary. In fact, the bound
contribution to Eq.~4! is easily identified as the change
the surface area ofS under a normal deformation of it
boundary,dYa5( l bFb) l a, which at each point is directed
along the tangent plane ofS at that point. The projection o
Fb onto the edgeC itself, taFa , does not contribute.

Let us turn now to the variation of the edge embeddingY
induced by the bulk variationdX. It can be decomposed with
respect to a basis adapted to both embeddings,X and Y
given by$t,l,n%, wherel5eal a. Thus at the edge we set

dY5ft1c l1Fn, ~5!

where the edge and bulk components are identified by c
tinuity, c5 l aFa andf5taFa . Modulo a divergence asso
ciated with a reparametrization of the boundary, which
volves the tangential componentf that we can safely
discard, we have for the variation of the infinitesimal ar
length
7-2
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LIPID MEMBRANES WITH AN EDGE PHYSICAL REVIEW E66, 021607 ~2002!
dYds5ds~kc1K iF!, ~6!

where we have used the fact that

ṫ52k l2K in. ~7!

Here k is the geodesic curvature ofC associated with its
embedding inS, and we have definedK i5Kabt

atb. The un-
conventional minus sign in the first term of Eq.~7! comes
about becausel is the outward normal toC on S, i.e., ṫ a5
2k l a.

The corresponding deformation inL is then given by

dYL5 R
C
ds~kc1K iF!. ~8!

Summing the two contributions~4! and~8! to the variation of
the energyF, as given by Eq.~1!, we find

dXF5mE
S
dAKF1 R

C
ds@~m1sk!c1sK iF#. ~9!

The bulk equilibrium is a minimal surface unaffected by t
boundary, satisfyingK50. On the boundary, the projection
along the normals to the edge,c andF, represent indepen
dent deformations, so that stationarity ofF requires the van-
ishing of the corresponding coefficents. We thus read off
two boundary conditions

sk1m50, ~10!

sK i50. ~11!

The first tells us that the geodesic curvature of the edge
embedded in the membrane is constant. The second sim
enforces the vanishing ofK i at the edge. Note that the com
pleteness of the basis$t,l% of tangent vectors onS at C,
gab5tatb1 l al b, permits us to express the mean curvature
the edge asK5K i1K' , whereK'5Kabl

al b. Thus modulo
the bulk equilibriumK50, the boundary condition~11! can
be alternatively expressed asK'50. The only potentially
non vanishing component ofKab on the edge is the off-
diagonal component,K i'5tal bKab .

For this particular model our approach has been he
handed; the boundary conditions we have written down
an elaborate way to express the simple vector identity

s ṫ5m l, ~12!

which equates the change in the tension over the intervaDs
along the edgesDt to the force due to surface tension acti
on the edgem lDs. The apparent mismatch in counting~three
versus two! is accounted for by noting that the projection
Eq. ~12! along t is an identity. For higher-order models, a
we will see, this projection will not be vacuous.

Note that had weN sheets conjoined on a single edge, E
~12! gets modified in an obvious way:

s ṫ5m(
i 51

N

l i , ~13!
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wherel i is the vector normal to the edge that is tangent to
i th sheet. Equation~13! provides a generalization of the Neu
mann rule for soap bubble clusters at a Plateau border@13# to
accomodate line tension on the edge. A simple applicatio
considered in Ref.@14#.

III. LIPID MEMBRANE WITH AN EDGE

A lipid membrane is modeled by a phenomenological e
ergy quadratic in the extrinsic curvature of the surface.
us write this as

Fb5E
S
dAF~gab,Kab!, ~14!

i.e., F depends at most on the extrinsic curvature, and n
for example, on its derivative“aKbc . In particular, we will
focus on the model described by the Helfrich energy den

F5a~K2K0!21m. ~15!

The spontaneous curvatureK0 is a constant, as is the bendin
rigidity a. The constantm is interpreted here as the Lagrang
multiplier implementing the constraint on the membra
area. We will discuss the addition of a Gaussian rigidity te
in Sec. V.

The energy of the bulk and the edge is

F5Fb1sL. ~16!

The shape equation describing the equilibrium in the bu
which is derived from the extremization of the energy~15!,

a@22¹2K12~K2K0!R1~K0
22K2!K#1mK50,

~17!

is well known @7#. The structure of this equation has be
discussed in detail elsewhere@12#, where an alternative deri
vation is also provided. The scalar curvatureR appearing in
Eq. ~17! is related to the extrinsic curvature through t
Gauss-Codazzi equation

R5K22KabK
ab. ~18!

Under a tangential deformation of the surface,d iX
5Faea , the energy density transforms as a divergence
is transferred to the boundary,

d iFb5 R
C
dsFl aFa. ~19!

This is because the local scalar energy densityF transforms
as

d iF5Fa]aF. ~20!

The details ofF do not enter. Note that Eq.~19! agrees with
the corresponding expression for the area withF51. As be-
fore, this boundary term induces a source into the bound
Euler-Lagrange equation. For an edge with a line tensions,
we get the first boundary condition, due to a deformat
along the normall, c,
7-3
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sk1F50, ~21!

where we have used Eqs.~8! and ~19!. This should be com-
pared with Eq.~10! to which it reduces ifF5m, a constant.
This boundary condition relates the geometry of the edg
the extrinsic curvature of the membrane evaluated at
boundary.

We now examine a normal deformation of the surfaceS,
d'X5Fn. The shape equation~17! determining the local
membrane equilibrium is obtained by demanding that
energy be stationary with respect to normal deformations
S, which may or may not vanish on the boundary. As su
this equation cannot be affected by the addition of a bou
ary. To determine the boundary conditions we need to ext
the support of the variation to include the boundary. We h
that the normal variation of the bulk energy can be written

d'Fb5E dA@FKF12GabK
abF1F abd'Kab#, ~22!

where Gab5]F/]gab and F ab5]F/]Kab . The boundary
term we wish to identify ind'Fb originates in thed'Kab
term in this expression. We recall that the extrinsic curvat
transforms as follows under a normal deformation ofS ~see
Ref. @12#!:

d'Kab52“a“bF1KacK
c
bF. ~23!

We thus have that

d'Fb5E dA@EF1“a~F“bF ab2F ab
“bF!#, ~24!

where we have defined the Euler-Lagrange derivative

E5~2“a“b1KacK
c
b!F ab1FK12GabK

ab. ~25!

Thus, modulo the bulk shape equation,E50, the boundary
contribution is

d'Fb5 R
C
dsla@F“bF ab2F ab

“bF#. ~26!

The terms proportional to“aF andF are not independent
the projection of“aF along the edge is completely dete
mined onceF is specified onC. To decomposed'F into two
independent parts we proceed as follows: we first decomp
“aF into its normal and tangential parts with respect toC,

“aF5 l a“'F1taḞ, ~27!

where we have defined“'5 l a
“a . We now perform an in-

tegration by parts on theḞ term to obtain for the secon
term on the right hand side of Eq.~26!,

R
C
dslaF ab

“bF5 R
C
dsF l al bF ab

“'F2F
d

ds
~ l aF abtb!G ,

~28!
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where we have discarded a total derivative term with resp
to arclength. In this way we succeed in isolating the indep
dent normal variations at the boundary, the coefficients oF
and“'F.

From Eqs.~8!, ~26!, and ~28!, we obtain for the total
boundary contribution of the normal variation

d'Fb5 R
C
dsH 2 l al bF ab¹'F1F l a¹bF ab

1
d

ds
~ l aF abtb!1sK iGFJ , ~29!

so that we can immediately read off the two boundary c
ditions that supplement Eq.~21!,

l a“bF ab1
d

ds
~ l aF abtb!1sK i50, ~30!

l al bF ab50. ~31!

The first is of third order in derivatives of the embeddin
functions. This is consistent with the fact that the sha
equation~17! is of fourth order. Using the decomposition o
the covariant derivative~27!, it can be written in the alterna
tive form

l al b“'F ab12
d

ds
~ l aF abtb!1k~ l al b2tatb!F ab1sK i50.

~32!

In the case of a membrane described by the Helfr
Hamiltonian~15! with an edge the third boundary conditio
~31! implies

K5K0 ~33!

on the edge—the rigid membrane necessarily has a con
mean curvature at the edge equal to its spontaneous v
This is entirely independent of the tensionsm or s, or of the
rigidity modulus. If K050, the membrane is minimal at it
edge. As observed in Ref.@8#, we note that the spherical ca
geometries exploited in Ref.@15# are a poor approximation
to the actual equilibrium geometry.

The second boundary condition~30! is of Robin type. For
anyF that is a function only ofK, we have thatF ab}gab, so
that the middle term in Eq.~30! vanishes,

l aF abtb50, ~34!

and the boundary condition reduces to

2a“'K1sK i50. ~35!

This equation determines the normal derivative ofK in
terms of the component of the extrinsic curvature tangen
the edge. It does not involve the surface tensionm. We em-
phasize that its existence seems to have gone unnoticed

The first boundary condition,@Eq. ~21!#, together with Eq.
~33!, implies that on the edge
7-4
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sk1m50. ~36!

The geodesic curvature of a loaded boundary is comple
fixed by the ratio of the tensions in exactly the same way
in the preceding section for soap bubbles, see Eq.~10!. If
m50 the edge is necessarily a geodesic of the bulk ge
etry.

If the line tension on the boundary vanishes,s50, the
consistency of Eq.~33! with Eq. ~21! requires thatm50
also. Furthermore, Eq.~35! implies“'K50 on the bound-
ary. But the unique solution satisfying the two boundary co
ditionsK5K0 and“'K50 is K5K0 everywhere. One way
to see this is to construct the Gaussian normal coordin
adapted to the edge, (l ,s), wherel is the length of the geo
desic that intersects the edge normally. With respect to
system of coordinates, the Laplacian assumes the form¹2

5] l
21k] l1]s

2 in the neighborhood of the edge. Thu
modulo the boundary conditions,¹2K5] l

2K on the edge.
But Eq. ~17! implies that¹2K50 there so that] l

2K and all
higher derivatives vanish. IfK is analytic inl, thenK5K0. If
mÞ0, there is no such constraint. The geometry is very
verely constrained by the boundary conditions.

Let us now examine an axially symmetric membrane w
an axially symmetric edge. With respect to cylindrical po
cooordinates$r,z,w% on R3, the membrane is described b
r5R(l ) and z5Z(l ), whereZ821R8251. l is the arc
length along a a curve with fixedw, and the primes denote
derivative with respect tol . The intrinsic geometry ofS is
described by the line element

dt25dl 21R2~ l !dw2. ~37!

We can write the extrinsic curvature in a form consiste
with axial symmetry as

Kab5l al bK l 1~gab2l al b!KR , ~38!

whereKl andKR are two spatial scalars that we identify
the principal curvatures of the embedding ofS in R3, andl a

is the outward pointing unit normal to the circle of fixedl ,
l a5(1,0). The mean curvature isK5K l 1KR . To evaluate
the principal curvatures, it is convenient to defineQ as the
angle that the tangent to a curve of fixedw makes with the
positivex axis:

dZ
dR

5tanQ. ~39!

We then haveZ85sinQ andR85cosQ, so that the principal
curvatures are

K l 5Q8, KR5
sinQ

R
. ~40!

Axial symmetry implies that the fourth-order shape equat
can be integrated to provide a third-order equation forR as a
function of l . It has been shown elsewhere~ @16,17#, see,
also Ref.@12#! that this equation takes the form
02160
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22a cosQS Q81
sinQ

R D 8
1aS Q81

sinQ

R D S Q82
sinQ

R D
3sinQ12aK0

sin2Q

R
2~m1aK0

2!sinQ50. ~41!

If the boundaryC is also axially symmetric so that it coin
cides with a fixed value ofl then l a5l a, K i5KR , K'

5K l , andK i'50. It is simple to show thatk52R8/R. We
thus have for the boundary conditions, Eqs.~33! and ~36!,

Q81sinQ/R5K0 , sR85mR. ~42!

The remaining boundary condition, Eq.~35!, of third order in
derivatives appears to present a problem: a third-order o
nary differential equation does not admit third-order boun
ary conditions. The inconsistency, however, is only appare
on the boundary, the shape equation Eq.~41! itself repro-
duces, modulo Eq.~42! the troublesome boundary conditio
~35!. Our analysis is thus completely consistent with the a
ally symmetric analysis of Ref.@8# where the boundary con
ditions ~42! are derived. It is worth stressing, however, th
potential pitfalls of using the axially symmetric problem as
guide to the more general problem. The boundary condit
~30! is a nontrivial constraint on the geometry, which is n
already encoded in the shape equation for nonaxially s
metric configurations.

IV. BALANCE OF FORCES

In this section, we consider the balance of the forces
erating at the edge. This provides the missing intuition on
physical origin of the boundary conditions we have deriv
in the preceding section.

Consider a point on the edge. In equilibrium, the tensiog
must satisfy

ġ5f al a . ~43!

Here f a is the membrane stress tensor so thatf al a is the
surface tension acting on the edge due to unbalanced stre
in the bulk at its boundary. In Ref.@12#, it was shown that the
bulk stress tensor for the model defined by the Helfrich
ergy ~15! can be expressed in the form

f a5F2aKS Kab2
K

2
gabD22aK0~Kab2Kgab!

2~m1aK0
2!gabGeb22a¹aKn. ~44!

Thus its projection along the normal to the edgel a is

f al a5$2a~K2K0!K'2a~K2K0!22m% l

12a~K2K0!K i't22a“'Kn. ~45!

In addition, as we have seen in Sec. II,

g52st. ~46!
7-5
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Using Eq.~7! for ṫ, we read off the three components of E
~43!,

sk52a~K2K0!K'2a~K2K0!22m, ~47!

sK i522a“'K, ~48!

052a~K2K0!K i' , ~49!

respectively, alongl, n, and t. The condition~48! coincides
with the boundary condition~35!. If K i'Þ0, Eq. ~49! im-
plies that K5K0. The remaining boundary condition~47!
then coincides with a linear combination of the bounda
conditions~33! and~36!. In the axially symmetric geometry
however,K i' does vanish so that Eq.~49! does not imply
K5K0 as it stands. One needs then to appeal to the i
grated shape equation~41!, which together with Eqs.~47!
and ~48! reproducesK5K0.

We thus have identified a very simple~if heavily dis-
guised! physical interpretation of the boundary conditions.
particular, in this approach, the boundary conditionK5K0
emerges as the vanishing of the stress induced by the
along the edge. Note that the variational approach did
rely on the identification of projections. Indeed, the bound
condition corresponding to the projection alongt was origi-
nally identified by demanding stationary energy for indep
dent boundary variations of“'F.

We also note that the form of Eq.~43! implies the inte-
grability condition

R
C
dsf al a50 ~50!

on the edge. The existence of these three extremely n
trivial conditions is far from obvious in our previous ap
proach.

One can say more. Take the equation“af a50 describing
the conservation of the stress tensor, dot it intoX, and inte-
grate over the membrane surface. We get

E dA“a~X•f a!5E dAea•f a. ~51!

Working on the right, we have

E dA“a~X•f a!5 R dsX• l af a

5 R dsX•ġ

52 R dst•g

5sL, ~52!

where we have used Eq.~43! on the second line, as well a
Eq. ~46! on the last line. On the other hand, if we writef a

5 f abeb1 f an, then
02160
y
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E dAea•f a5E dA faa . ~53!

We note that the bending energy*dAK2 is a conformal in-
variant, and so does not contribute to the tracef a

a . We have
f a

a52aK0(K2K0)22m), so that

2mA22aK0E dA~K2K0!1sL50. ~54!

This condition is useful for identifying the sign associat
with the multipliers. For example, ifK050, it is clear thatm
is necessarily negative as was observed in Ref.@8#.

V. GAUSSIAN RIGIDITY

The geometrical scalars we can construct with dimens
@ length#22 are R, K2, and KabK

ab. The Gauss-Codazz
equation~18! tells us that the three scalar invariantsR, K2,
and KabK

ab are not independent. In addition, the Gaus
Bonnet functional

I 5E
S
dAR ~55!

is a topological invariant if the membrane is closed. Mo
generally for an open membrane,

I 5E
S
dAR12 R

C
dsk ~56!

is a topological invariant. A consequence is that if a Gauss
rigidity term is included in the energy a line rigidityrdsk is
necessarily induced along its boundary.

To obtain the variation of the Gaussian term, we need
know how the scalar curvature varies. Its tangential deform
tion is straightforward; to determine its normal deformatio
we exploit Eq.~18! and with it the technology developed i
Secs. II and III.

Consider now a Gaussian rigidity addition to the bu
energy, so that

F5Fb1bE dAR. ~57!

Whereas the bulk shape equation is unmodified, all th
boundary conditions are changed:

a~K2K0!21bR1m1sk50, ~58!

2a“'K22bK̇ i'1sK i50, ~59!

a~K2K0!1bK i50. ~60!

We note that the Gauss-Codazzi equation~18! allows us to
expressR in terms of the projections ofKab with respect to
the edge,R52(K iK'2K i'

2). Equation~58! is quadratic in
the extrinsic curvature. Equations~59! and ~60! by contrast
are linear relationship betweenK' andK i .
7-6
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Note that, unlike the case of the pure Helfrich model,
central term in Eq.~59! does not vanish in general. Howeve
it does vanish in an axially symmetric geometry~with axially
symmetric edge!, K i'50. More generally, we have the inte
gral statement

R
C
ds@2a“'K1sK i#50. ~61!

In an axially symmetric geometry one can check th
modulo the lower-order boundary conditions~58! and ~60!,
Eq. ~41! reproduces Eq.~59! on the boundary.

Let us consider now the balance of the forces in this ca
The Gaussian term makes no contribution tof a @12#. Naively
reinvoking Eq.~43! would appear to suggest that this ter
cannot modify the boundary conditions, in contradiction w
what we have just derived. However, with a general funct
F and in particular forbR, the termd/ds( l aF abtb)F ap-
pearing in its normal variation@see Eq.~28!# will be nonva-
nishing, and it is no longer appropriate to discard a to
derivative as we did in deriving Eq.~28!. For consistency, we
claim therefore that we need to modify Eq.~43! as follows:

g→g2 l aF abtbn. ~62!

For Gauss-Bonnet, the second term reads22bK i'n. This
mysterious term is precisely the tension associated with
edge energyrCdsk. The projections of Eq.~43! along l, n,
and t, respectively, then read

a@~K2K0!222~K2K0!K'#22bK i'
2 1sk1m50,

~63!
ica

d
oo
rg

m

02160
e

t,

e.

n

l

e

2a“'K22bK̇ i'1sK i50, ~64!

2K i'@a~K2K0!1bK i#50, ~65!

where we have used the fact that, at the edge,

ṅ5K it1K i'l. ~66!

As was the case in the preceding section, these coincide
the boundary conditions~58!, ~59!, ~60! whenK i'Þ0.

VI. CONCLUSIONS

Whereas for a soap film, it is very simple to identify th
forces operating on the edge, and so read off the bound
conditions on the bulk geometry, such an approach is
obvious for a membrane. However, we have demonstra
how simple geometrical and variational arguments may
exploited to derive the boundary conditions on the lip
membrane geometry. We have made no restrictive assu
tions about the symmetry of the configuration. We th
showed how these boundary conditions emerge from a
ance of the forces projected along a basis of vectors ada
to the edge.
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